Fourth-Order Compact Difference Schemes for the Riemann-Liouville and Riesz Derivatives
نویسندگان
چکیده
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملGeneralized GL, Caputo, and Riemann-Liouville derivatives for analytic functions
The formulations of Riemann-Liouville and Caputo derivatives in the complex plane are presented. Two versions corresponding to the whole or half plane. It is shown that they can be obtained from the Grünwald-Letnikov derivative.
متن کاملDetermination of Coefficients of High-Order Schemes for Riemann-Liouville Derivative
Although there have existed some numerical algorithms for the fractional differential equations, developing high-order methods (i.e., with convergence order greater than or equal to 2) is just the beginning. Lubich has ever proposed the high-order schemes when he studied the fractional linear multistep methods, where he constructed the pth order schemes (p = 2, 3, 4, 5, 6) for the αth order Rie...
متن کاملFourth-order and Optimised Finite Difference Schemes for the 2-d Wave Equation
This paper investigates some fourth-order accurate explicit finite difference schemes for the 2-D wave equation obtained using 13-, 17-, 21-, and 25-point discrete Laplacians. Optimisation is conducted in order to minimise numerical dispersion and computational costs. New schemes are presented that are more computationally efficient than nine-point explicit schemes at maintaining less than one ...
متن کاملOn q–fractional derivatives of Riemann–Liouville and Caputo type
Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/540692